深度神经网络(DNN,Deep Neural Network)作为 AI 领域的重要突破,在视觉感知任务中展现出卓越的性能表现,其识别准确率等关键指标甚至已在特定场景下超越人类水平。这使人们普遍认为,人工智能技术的快速发展将促进对生物智能的深入理解。 然而,由美国布朗大学和美国哥伦比亚大学联合团队最近开展的一项研究却提出了不同的观点:随着 AI 模型在物体识别任务上的表现越来越强,其在神经表征(如下颞叶皮层活动模式)和行为反应(如注意力分配策略)两个关键维度上,与灵长类动物视觉系统的差异反而越来越大。 这提示人们,高性能的 AI 模型并不等于类脑模型,也就是说,模型如果只是为了提升任务准确率,未必会更接近大脑的运算机制。这对神经科学、认知科学与 AI 交叉研究敲响警钟:不能再假设“AI 表现越好,就越接近人脑”。这一发现挑战了人们长期以来的假设,即 AI 的进步将自然而然地推动脑与认知科学的发展。 该论文第二作者、哥伦比亚大学在读博士生冯品源对 DeepTech 表示:“未来的 AI 研究需要明确目标——是构建功能性工具,还是理解大脑机制。如果是后者,我们需要反过来用脑与认知科学的发现来约束模型的设计,而不是仅依赖工程优化。 日前,相关论文以《更强大的人工智能并不意味着更好的生物模型》(Better artificial intelligence does not mean better models of biology)为题发表在预印本网站arXiv[1]。布朗大学德鲁·林斯利(Drew Linsley)研究助理教授是第一作者,冯品源是第二作者,布朗大学托马斯·瑟尔(Thomas Serre)教授担任通讯作者。 从历史维度来看,人工智能的发展起源于对人脑机制的探索,这一渊源在专业术语中仍有体现——诸如“神经网络”“表征”等核心概念都直接借鉴自神经科学与心理学等领域。典型如诺贝尔物理学奖得主杰弗里·辛顿(Geoffrey Hinton)的学术轨迹,其早期认知心理学研究对人脑的探索为后续 AI 突破奠定了理论基础。 然而,随着计算硬件的迭代升级和技术范式的革新,AI 发展的主导力量已从神经科学、心理学转向计算机科学,这一转变带来了研究范式的根本性重构。过去人们相信,通过优化任务表现(比如 ImageNet 分类 [2]),模型就能自发学到类似人脑的表征,但是从 AI 目前的发展来看,这套逻辑正在失效。 在这一研究背景下,团队提出了“和谐化”方法,尝试在模型优化中引入人类视觉的注意机制。通过调整训练数据和目标函数,使模型决策时更关注与人类视觉系统一致的关键区域,初步验证了提升模型生物合理性的可行性。 然而,该方法仍面临核心挑战:高质量人类行为数据的匮乏使得优化过程本质上仍未完全脱离监督学习的框架。尽管如此,这一研究方向具有双重价值——既增强了模型可解释性,又为理解人类视觉机制提供了新视角。 基于这些发现,该研究强调视觉科学需要建立独立于工程 AI 的方法论体系,同时选择性吸收神经科学的启示来优化 DNN 的能效、泛化和鲁棒性。 重点突破方向包括:时间编码机制、动态稀疏连接(模拟神经节能)、反馈/横向结构(实现类皮层的注意调控)、突触可塑性(支持持续学习)以及多模态整合(借鉴海马记忆机制)。这些探索需要在生物合理性与计算效率间寻求平衡,优先实现工程可行的关键特性,而非完全模拟生物细节。 研究指出,当前工程优化的 AI 模型存在系统性偏差,视觉科学研究需审慎使用。未来的突破有赖于生物数据与大规模训练的深度结合,这需要神经科学、认知科学和 AI 领域在实验平台、训练流程和评估标准上建立协同机制。 需要了解的是,大脑不是为静态单一模态任务进化的,而是在一个不断变化、充满多感官输入的世界中发展出来的。因此,传统监督学习的原理和大脑的学习机制之间存在本质差异。正是这一认知推动了自监督学习的兴起,该方法通过从原始数据中自主发掘潜在规律,有效减少了对人工标注的依赖,展现出更强的生物合理性。 另外,如果希望模型学到类似生物的视觉策略,训练环境也应该是多模态、动态、交互式的。例如,可以设计一个虚拟环境,模型需要不断与环境互动、预测未来、聚焦目标以及躲避风险。 冯品源解释说道:“这样的环境将促使模型发展出更强的注意机制、时序整合机制和多模态融合能力。随着具身智能概念的火爆,越来越多的人也关注这一方向——从让 AI 静态感知到真实世界的物体进行交互,从中获得有用的多维度信息。” 目前,冯品源在哥伦比亚大学祖克曼研究所(Zuckerman Institute)下属的“视觉推理”实验室(Visual Inference Lab)研究人与 AI 的视觉机制,他的导师是尼古拉斯·克里格斯科特(Nikolaus Kriegeskorte)教授。 他正在努力将认知科学和神经科学的见解推动 AI 发展,同时利用 AI 促进对人类智能的理解。在加入哥伦比亚大学之前,他在布朗大学获得硕士学位,师从托马斯·瑟尔(Thomas Serre)教授,主要研究人类与机器在表征对齐方面的关系。 托马斯·瑟尔团队的前期研究为这一领域奠定了重要基础。在视觉行为层面,他们开发的新型对齐机制首次实现了 AI 在复杂场景中与人类认知策略的高度一致;在神经表征层面,他们发现工程优化的 AI 模型与生物视觉的神经活动模式存在系统性偏离。这些发现为构建新一代神经可解释的感知模型提供了理论框架和方法学指导。 未来,该团队将聚焦两个方向继续研究:围绕 AI 模型展开深度探索,从动态数据(如视频)中学习,使模型的视觉能力更靠近人类;继续构建横跨认知科学、神经科学与计算机科学领域的大规模数据平台,推动跨学科研究标准的建立与互认。这些方向有助于为 AI 与生物智能研究提供更丰富的视角。
九十九夜xbox360以探险为生的人与现役宇航员之间的差距非常大,几乎没有探险家考虑过将太空纳入自己的冒险版图。但被称为“深海博士”的约瑟夫·迪图里是个例外。他是一名终身潜水员兼生物医学教授,同时也是一名退役的美国海军军官。2023年,生于1967年的他潜入美国南部佛罗里达礁岛群水面以下22英尺(约6.7米),在面积200平方英尺(约18.58平方米)的朱尔斯海底小屋里待了100天,打破在水下停留时间最长的吉尼斯世界纪录。你与亚马逊的合作包括你的播客《球场大脑》,这个标题非常贴切,因为你和共同主持人史蒂夫-纳什都拥有深厚的篮球知识。你在NBA征战了22个赛季,还能从他那里学到篮球知识吗?九十九夜xbox360ysl水蜜桃86满十八岁还能用吗据Meta官方,用户只需将视频上传至Meta AI应用、Meta.AI网站和Edits应用这三个平台之一,从超50种预设AI编辑提示词,如“复古漫画”、“电子游戏”、“梦幻光影”中挑选风格,点击确认,Meta AI就能自动处理10秒视频片段完成风格转换。比如雨天拍摄画面选“梦幻光影”,就能添加珠光闪烁、柔焦特效;一段普通生活视频用“复古漫画”提示词,瞬间变为怀旧动态漫画。曼城因为埃德森的这次失误而遭遇了他们在本届世俱杯的第一个进球,这使得本届世俱杯已经没有了从未丢球的球队。
20250819 🔞 九十九夜xbox3606月19日消息,在2025 MWC 上海期间,中国电信与华为联合发布了“基于智能编排和上行频谱解耦与池化,形成智能大上行技术”最新创新技术成果。该技术充分挖掘多天线的上行覆盖能力,并结合分布式UCN(User-Centric Network,用户中心网络)和时频制空功全资源实时共享,引入无线智能化技术,构筑无线网络AI业务承载网,赋能智能穿戴、车联网、AI助理实时交互等领域,标志着5G-A网络向成为Mobile AI网络底座迈出坚实一步。女人尝试到更粗大的心理变化从赛事报名规则以及日、韩两队报名情况看,国足新教练组将带领23名球员赴韩国参赛。至于具体人选,则很可能以年轻球员为主,配以少数经验丰富的老将作为帮衬。
📸 刘东宁记者 卢新安 摄
20250819 ❤️ 九十九夜xbox360据悉,杭州宇树科技有限公司(以下简称“宇树科技”)已于近日完成C轮融资的交割,由中国移动旗下基金、腾讯、锦秋基金、阿里巴巴、蚂蚁集团以及吉利资本共同领投,绝大部分老股东亦积极跟投。另有知情人士透露,本轮融资完成后,宇树科技的估值已达120亿元人民币。满18岁免费观看高清电视剧推荐北青报记者了解到,驭势科技的辅助驾驶域控制器国产化率达84%,已在无人物流、无人巴士、无人配送、乘用车智能驾驶、无人驾驶出租车等多元场景开展商业应用。其依托自主研发的智能驾驶系统,以“真无人、全天候、全场景”的AI司机,实现了超1000辆无人车的规模化运营,累计“真无人”自动驾驶里程超580万公里,在民航、厂区、智慧城市等场景成功落地超过百个项目。
📸 李小杰记者 杜志海 摄
🖤 美国“动力”网站“战区”频道10日称,辽宁舰和山东舰的远海训练凸显了中国海军日益增强的航母实力。“值得注意的是,中国海军公开承认在这些具有高度战略地位水域进行的双航母联合演习。”春香草莓和久久草莓的区别